
DOI: 10.1140/epjad/s2005-05-006-x
Eur Phys J A (2005) 24, s1, 35–39 EPJ A direct

electronic only
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Abstract. The quark-hadron duality is studied in a systematic way for polarized and unpolarized structure
functions, by taking into account all the available data in the resonance region. In both cases, a precise
perturbative QCD based analysis to the integrals of the structure functions in the resonance region has
been done: non perturbative contributions have been disentangled and the higher twist contributions have
been evaluated. A different behavior for the unpolarized and polarized structure functions at low Q2 has
been found.

PACS. quark-hadron duality – structure functions

1 Introduction

Understanding the structure and interaction of hadron in
terms of the quark and gluon degrees of freedom of QCD
is one of the unsolved problems of the Standard Model
of nuclear and particle physics. At present it’s not possi-
ble to describe the physics of hadrons directly from QCD,
however it is known that it should just be a matter of
convenience the choice of describing a process in terms of
quark-gluon or hadronic degrees of freedom. This concept
is called quark-hadron duality. At high energies, where the
interactions between quarks and gluons become weak and
quark can be considered asymptotically free, an efficient
description of phenomena is possible in terms of quarks.
At low energies, where the effects of confinement become
large, it is more efficient to work in terms of collective
degrees of freedom, the physical mesons and baryons. In
these terms, it’s clear that the duality between the quark
and hadron descriptions reflects the relationship between
confinement and asymptotic freedom, and is intimately re-
lated to the nature of the transition from non-perturbative
(low energy) to perturbative QCD (high energy).

The concept of duality was introduced for the first
time by Bloom and Gilman [1] in deep inelastic scattering
(DIS). They noticed an equivalence between the smooth
x dependence of the inclusive structure function at large
Q2 and the average over W 2 of the nucleon resonances.
Furthermore, this equivalence appeared to hold for each
resonance, over restricted regions in W . Based on this ob-
servations, one can refer to global duality if the average,
defined e.g. as the integral of the structure functions, is
taken over the whole resonance region 1 ≤ W 2 ≤ 4 GeV2.
If, however, the averaging is performed over smaller W 2
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ranges, extending e.g. over single resonances, one can re-
fer to local duality.

Although the duality between quark and hadron de-
scriptions is, in principle, formally exact, how this reveals
itself specifically in different physical processes and under
different kinematical conditions is the key to understand
the consequences of QCD for hadronic structure. The phe-
nomenon of duality is quite general in nature and can be
studied in a variety of processes, such as DIS, e+e− an-
nihilation into hadrons, and hadron-hadron collisions, or
semi-leptonic decays of heavy quarks. With the advent of
both more detailed studies of soft scales and confinement
[2], and higher precision measurements covering a wide
range of reactions, it is now becoming possible to investi-
gate the role of duality in QCD as a subject per se.

2 Kinematical variables

Besides the scaling variable x, other variables have been
used in the literature to study duality and a number of
parametrizations based on these variables have been pro-
posed that reproduce in an effective way some of the cor-
rections to the perturbative QCD calculations. The most
extensively used variables are: x′ = 1/ω′, where ω′ =
1/x+M2/Q2, originally introduced by Bloom and Gilman
in order to obtain a better agreement between DIS and
the resonance region; ξ = 2x/(1+(1+4x2M2/Q2)1/2) [3],
originally introduced to take into account the target mass
effects; xw = Q2 +B/(Q2 +W 2 −M2 +A), A and B being
fitted parameters, used in [4,5]. These additional variables
include a Q2 dependence that phenomenologically absorbs
some of the scaling violations that are important at low
Q2. In Fig. 1 their behavior vs. x is compared for dif-
ferent values of Q2. From the figure one can see that by
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Fig. 1. Ratio between the three variables x′, ξ and xW defined
in the text and the Bjorken variable x as a function of x

calculating F2 in ξ and x′, one effectively “rescales” the
structure function to lower values of x, in a Q2 dependent
way, namely the rescaling is larger at lower Q2. In the
analysis reported in the following, the x variable has been
used and all the corrections have been applied one by one.

3 Analysis of data

A quantitative analysis of the Q2 dependence of quark-
hadron duality in both polarized and unpolarized ep scat-
tering is presented. All current data in the resonance re-
gion, 1 ≤ W 2 ≤ 4 GeV2, have been taken into account.
For the unpolarized case it has been used the data ob-
tained at Jefferson Lab in the range 0.3 ≤ Q2 ≤ 5 GeV2

[6], and the data from SLAC ([7] and references therein)
for Q2 ≥ 4 GeV2. For the polarized case there are only
few experimental data in the resonance region. One set is
part of the E143 data [8], and it corresponds to Q2 = 0.5
and 1.2 GeV2. Another set is the one from HERMES [9,
10] in the range 1.2 ≤ Q2 ≤ 12 GeV2.

In the polarized case the Q2 dependence originates
from the structure function F1 and from the ratio R, for
which the SLAC global analysis [11] parametrization has
been used. For the asymmetry A1, it was used a power law
fit to the world DIS data at x >0.3, A1 = x0.7, as already
shown in [9]. This parametrization of A1 is constrained to
1 at x=1 and it does not depend on Q2, as indicated by
experimental data in this range [12].

The full procedure of the analysis is described in [13].
The quark-hadron duality in DIS is studied by consider-
ing the ratio of the integrals of the structure functions
integrated in a defined x-range, corresponding to the W
range of the resonance region. The structure function in

the numerator is evaluated using the experimental data in
the resonance region, while the one at the denominator is
calculated from parametrizations that reproduce the DIS
behavior of the data at large Q2. The ratios have been
calculated in unpolarized and polarized cases. It has been
found [13] that quark-hadron duality has not been ful-
filled by using solely the parton distribution functions up
to NLO in both the unpolarized and polarized structure
functions F2 and g1. However it was possible to see a differ-
ent behavior between Runpol and Rpol. In the unpolarized
case the ratio is increasing with Q2, but for the polarized
case the situation is different: while at low Q2 the ratio
is significantly below unity and shows a strong increase
with Q2, at higher Q2 the ratio derived from HERMES is
above unity and it appears to be weakly dependent of Q2

within error bars. The situation is different with the use
of the phenomenological fits to DIS data [14,15,5]. Since
these phenomenological parametrizations are obtained by
fitting deep-inelastic data even in the low Q2 region, they
can implicitly include non-perturbative effects and this
may explain the “observation of duality”. It becomes re-
ally important to understand the contribution of these
non-perturbative effects.

4 Size of non-perturbative contributions

In order to understand the nature of the remaining Q2

dependence that cannot be described by NLO pQCD evo-
lution, the effect of target mass corrections and large x
resummation have been studied. As mentioned early, the
analysis was performed by using x as an integration vari-
able, which avoids the ambiguities associated to the us-
age of other ad hoc kinematical variables. Standard in-
put parametrizations with initial scale Q2

o = 1 GeV2 have
been used. Once both effects have been subtracted from
the data, and assuming the validity of the twist expansion,
one can interpret any remaining discrepancy of the ratio
from unity in terms of higher twist.

4.1 Target Mass Corrections (TMC)

TMC are necessary to take into account the finite mass
of the initial nucleon. They are corrections to the leading
twist (LT) part of the unpolarized structure function F2.
For Q2 larger than ≈ 1 GeV2, TMC are taken into account
through the following expansion [16]:

FTMC
2 (x, Q2) =

x2

ξ2γ3 F∞
2 (ξ, Q2) + 6

x3M2

Q2γ4

∫ 1

ξ

dξ′

ξ′2 (1)

where F∞
2 is the structure function in the absence of TMC.

Following the original suggestion of [17], only terms up to
order M2/Q2 are kept in the expansion, so as to minimize
ambiguities in the behavior of F2 at x ≈ 1. Although this
procedure disregards parton off-shell effects that might be
important in the resonance region [18,19], it’s important
to emphasize its power expansion character, and setting
as a limiting condition for its validity, that the inequality
x2M2/Q2 < 1 be verified [20], Q2 � 1.5 GeV2.
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4.2 Large x Resummation (LxR)

LxR effects arise formally from terms containing powers
of ln(1−z), z being the longitudinal variable in the evolu-
tion equations, that are present in the Wilson coefficient
functions C(z). The latter relate the parton distributions
to e.g. the structure function F2, according to:

FNS
2 (x, Q2) =

αs

2π

∑
q

∫ 1

x

dz CNS(z) qNS(x/z, Q2), (2)

where it has been considered only the non-singlet (NS)
contribution to F2 since only valence quarks distributions
are relevant in the present kinematics. The logarithmic
terms in CNS(z) become very large at large x, and they
need to be resummed to all orders in αS . This can be ac-
complished by noticing that the correct kinematical vari-
able that determines the phase space for the radiation of
gluons at large x, is W̃ 2 = Q2(1− z)/z, instead of Q2 [21,
22]. As a result, the argument of the strong coupling con-
stant becomes z-dependent: αS(Q2) → αS(Q2(1 − z)/z)
([23] and references therein). In this procedure, however,
an ambiguity is introduced, related to the need of con-
tinuing the value of αS for low values of its argument,
i.e. for z very close to 1 [24]. The size of this ambiguity
could be of the same order of the HT corrections. Nev-
ertheless, the present evaluation is largely free from this
problem because of the particular kinematical conditions
in the resonance region. In this analysis, in fact, the struc-
ture functions have been studied at fixed W 2, in between
1 ≤ W 2 ≤ 4 GeV2. Consequently Q2 increases with x.
This softens the ambiguity in αS , and renders this proce-
dure reliable for the extraction of HT terms.

4.3 Disentangle of non-perturbative contributions

All the effects described in the present section are sum-
marized in Fig. 2, where the ratio between the resonance
region and the ’DIS’ one is reported for the unpolarized
and for the polarized case: the numerator is obtained from
the experimental data, while the denominator includes the
different components of the present analysis, one by one.

For unpolarized scattering it has been found that TMC
and LxR diminish considerably the space left for HT con-
tributions. The contribution of TMC is large at the largest
values of Q2 because these correspond also to large x val-
ues. Moreover, the effect of TMC is larger than the one of
LxR. The lowest data point at Q2 ≈ 0.4 GeV2 has been ex-
cluded from the analysis because of the high uncertainty in
both the pQCD calculation and the subtraction of TMC.

Similarly, in polarized scattering the inclusion of TMC
and LxR decreases the ratio RLT

pol . However, in this case
these effects are included almost completely within the
error bars. Clearly, duality is strongly violated at Q2 < 1.7
GeV2.

The difference between unpolarized and polarized scat-
tering at low Q2 can be attributed e.g. to unmeasured, so
far, Q2 dependent effects, both in the asymmetry, A1, and
in g2. Furthermore, a full treatment of the Q2 dependence
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Fig. 2. Ratio between the integrals of the measured structure
functions and the calculated ones plotted as a function of Q2.
The calculation includes one by one the effects of NLO pQCD
(squares), TMC (open circles) and LxR (triangles), The top
panel refers to the unpolarized case, while the bottom panel to
the polarized one

would require both a more accurate knowledge of the ratio
R in the resonance region, and a simultaneous evaluation
of g2. The present mismatch between the unpolarized and
polarized low Q2 behavior might indicate that factoriza-
tion is broken differently for the two processes, and that
the universality of quark descriptions no longer holds.
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5 Size of Higher Twist (HT) corrections

The discrepancy from unity of the ratios already presented
is interpreted in terms of HTs. In Figs. 3 and 4 the ques-
tion of the size of the HT corrections is addressed ex-
plicitely. For F2, they are defined as:

H(x, Q2) = Q2 (
F res

2 (x, Q2) − FLT
2

)
(3)

CHT (x) =
H(x, Q2)

F pQCD
2 (x/Q2)

≡ Q2 F res
2 (x, Q2) − FLT

2

FLT
2

(4)

A similar expression is assumed for g1. CHT is the so-
called factorized form obtained by assuming that the Q2

dependences of the LT and of the HT parts are similar
and therefore they cancel out in the ratio. Although the
anomalous dimensions of the HT part could in principle
be different, such a discrepancy has not been found so
far in accurate analyses of DIS data. The HT coefficient,
CHT has been evaluated for the three cases listed also in
Fig. 2, namely with respect to the NLO pQCD calculation,
to NLO+TMC and to NLO+TMC+LxR. The values of
1+CHT /Q2 are plotted in Fig. 3 (upper panel) as a func-
tion of the average value of x for each spectrum. One can
see that the NLO+TMC+LxR analysis yields very small
values for CHT in the whole range of x. Furthermore, the
extracted values are consistent with the ones obtained in
[20] using a different method, however the present extrac-
tion method gives more accurate results. Because of the
increased precision of our analysis, we are able to disen-
tangle the different effects from both TMC and LxR.

In the polarized case (lower panel) the HTs are small
within the given precision, for Q2 > 1.7 GeV2, but they
appear to drop dramatically below zero for lower Q2 val-
ues. The inclusion of TMC and LxR renders these terms
consistent with zero at the larger Q2 values, but it does
not modify substantially their behavior at lower Q2. It
should also be noticed that, by parametrizing the struc-
ture functions as in (3), it is assuming that all of the non-
perturbative (np) contributions are included in O(1/Q2)
twist-4 terms. These are in fact the largest type of devia-
tions from a pQCD behavior, to be expected at Q2 values
of the order of few GeV. Only from accurate analyses us-
ing a larger number of more precise data, would one be
able to distinguish among different np behaviors. From a
comparison with results of ratio including phenomenologi-
cal parametrizations [13] that includes some of these extra
np behaviors it’s possible to see, however, that their effect
seems not be large.

In Fig. 4 the results of the present analysis in the unpo-
larized case are compared to other current extractions of
the same quantity. These are: i) the extractions from DIS
data, performed with the cut W 2 > 10 GeV2 [25,26,27];
ii) the recent DIS evaluation by S. Alekhin [28] using a cut
on W 2 > 4 GeV2, and including both TMC and NNLO;
iii) the results obtained within a fixed W 2 framework [20],
including both TMC and LxR. The results obtained in the
deep inelastic region [29] also including both TMC and
LxR yield small HT coefficients, consistent with the ones
found in [20]. However, while most of the suppression of
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Fig. 3. HT coefficients extracted in the resonance region
according to (3). Shown in the figure is the quantity 1 +
CHT (x)/Q2. The top (bottom) panel refers to the unpolarized
(polarized) case

the HT in the resonance region is attributed to TMC, in
[29] the contribution of TMC is small and the suppression
is dominated by LxR. In other words, the Q2 behavior in
the DIS and resonance regions seems to be dominated by
different effects.

6 Conclusions

A precise and detailed analysis of all publish data in reso-
nance region has been presented, with the aim of studying
the quark-hadron duality in unpolarized and polarized ep
scattering. A pQCD NLO analysis including target mass
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Fig. 4. Comparison of the HT coefficient displayed in Fig. 3,
with other extractions. The triangles and squares are the same
as in Fig. 3 and they represent the present determination in the
resonance region. The results are compared with extractions
using DIS data only. The striped hatched area corresponds to
the early extraction of [25]. The full dots are the central values
of the extractions in [26] and [27]. These are compared with the
more recent extraction of [28] which includes also TMC. Re-
sults obtained in the resonance region, in the fixed W 2 analysis
of [20] are also shown (stars)

corrections and large x resummation effects was extended
to the integrals of both unpolarized and polarized struc-
ture functions in the resonance region. Both effects have
been quantified and disentangled for the first time. In the
present analysis [13], duality is satisfied if the pQCD cal-
culations agree with the data, modulo higher twist con-
tributions consistent with the twist expansion. A different
behavior for unpolarized and polarized structure functions
has been found, and duality seem strongly violated in the
latter case for Q2 <1.7 GeV2 The discrepancy of the ratio
from unity has been interpreted in terms of HTs. While
the size of the HT contributions is comparable in both
polarized and unpolarized scattering at larger x and Q2

values, at low x and Q2 large negative non-perturbative
contributions have been found only in the polarized case.
The present detailed extraction of both the Q2 depen-
dence and the HTs in the resonance region establishes a
background for understanding the transition between par-
tonic and hadronic degrees of freedom. In particular, it
seems to be detecting a region where the twist expansion
breaks down, and at the same time, the data seem to be
still far from the Q2 → 0 limit, where theoretical predic-
tions can be made [30]. More studies addressing this re-
gion will be pursued in the future, some of which are also
mentioned in [20,31]. A breakdown of the twist expansion
can be interpreted in terms of the dominance of multi-
parton configurations over single parton contributions in

the scattering process. In order to confirm this picture it
will be necessary to both extend the studies of the twist
expansion, including the possible Q2 dependence of the
HT coefficients [32,33] and terms of order O(1/Q4), and
to perform duality studies in semi-inclusive experiments.

References

1. E.D. Bloom, F.J. Gilman: Phys. Rev. Lett. 25, 1140
(1970); Phys. Rev. D 4, 2901 (1971)

2. M. Gockeler et al.: Phys. Rev. D 53, 2317 (1996); LHPC
and TXL Coll., D. Dolgov et al.: Phys. Rev. D 66, 034506
(2002); W. Detmold, W. Melnitchouk, A.W. Thomas:
Phys. Rev. D 66, 054501 (2002)

3. O. Nachtmann: Nucl. Phys. B 63, 237 (1973)
4. A. Szczurek, V. Uleshchenko: Eur. Phys. J C 12, 663

(2000)
5. A. Bodek, U.K. Yang: arXiv:hep-ex/0203009
6. I. Niculescu et al.: Phys. Rev. Lett. 85, 1186 (2000)
7. L.W. Whitlow et al.: Phys. Lett. B 282, 475 (1992)
8. E143 Coll., K. Abe et al.: Phys. Rev. D 58, 112003 (1998)
9. HERMES Coll., A. Airapetian et al.: Phys. Rev. Lett. 90,

092002 (2003)
10. A. Fantoni: Eur. Phys. J A 17, 385 (2003)
11. L.W. Whitlow et al.: Phys. Lett. B 250, 193 (1990)
12. E155 Coll., P.L. Anthony et al.: Phys. Lett. B 493, 19

(2000)
13. N. Bianchi, A. Fantoni, S. Liuti: Phys. Rev. D 69, 014505

(2004)
14. H. Abramowicz, A. Levy: arXiv:hep-ph/9712415
15. NMC Coll., P. Amaudruz et al.: Phys. Lett. B 364, 107

(1995)
16. H. Georgi, H.D. Politzer: Phys. Rev. D 14, 1829 (1976)
17. J.L. Miramontes, J. Sanchez Guillen: Z. Phys. C 41, 247

(1988)
18. W.R. Frazer, J.F. Gunion: Phys. Rev. Lett. 45, 1138

(1980)
19. I. Niculescu, C. Keppel, S. Liuti, G. Niculescu: Phys. Rev.

D 60, 094001 (1999)
20. S. Liuti, R. Ent, C.E. Keppel, I. Niculescu: Phys. Rev.

Lett. 89, 162001 (2002)
21. S.J. Brodsky, G.P. Lepage: SLAC-PUB-2447
22. D. Amati et al.: Nucl. Phys. B 173, 429 (1980)
23. R.G. Roberts: Eur. Phys. J C 10, 697 (1999)
24. M.R. Pennington, G.G. Ross: Phys. Lett. B 102, 167

(1981)
25. M. Virchaux, A. Milsztajn: Phys. Lett. B 274, 221 (1992)
26. A.D. Martin et al.: Phys. Lett. B 443, 301 (1998)
27. M. Botje: Eur. Phys. J C 14, 285 (2000)
28. (a) S.I. Alekhin: Phys. Rev. D 63, 094022 (2001); Phys.

Rev. D 68, 014002 (2003); Journal High Energy Phys. 02,
015 (2003); (b) arXiv:hep-ph/0212370

29. S. Schaefer, A. Schafer, M. Stratmann: Phys. Lett. B 514,
284 (2001)

30. X.D. Ji, J. Osborne: J. Phys. G 27, 127 (2001)
31. S. Liuti: Eur. Phys. J A 17, 385 (2003).
32. A. Fantoni: Proc. of the workshop “Structure of the nu-

cleon at large Bjorken x”, July 2004, Marseille.
33. N. Bianchi, A. Fantoni, S. Liuti: in preparation


	Introduction
	Kinematical variables
	Analysis of data
	Size of non-perturbative contributions
	Target Mass Corrections (TMC)
	relax mathversion {bold}Large $x$ Resummation (L$x$R)
	Disentangle of non-perturbative contributions

	Size of Higher Twist (HT) corrections
	Conclusions

